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Abstract

We introduce a single general representation incorporating in a unique manner
all Bell-type inequalities for a multipartite correlation scenario with an arbitrary
number of settings and any spectral type of outcomes at each site. Specifying
this general representation for correlation functions, we prove that the form
of any correlation Bell-type inequality does not depend on spectral types of
outcomes, in particular, on their numbers at different sites, and is determined
only by extremal values of outcomes at each site. We also specify the general
form of bounds in Bell-type inequalities on joint probabilities. Our approach
to the derivation of Bell-type inequalities is universal, concise and can be
applied to a multipartite correlation experiment with outcomes of any spectral
type, discrete or continuous. We, in particular, prove that, for an N-partite
quantum state, possibly, infinite dimensional, admitting the 2 × · · · × 2︸ ︷︷ ︸

N

-setting

LHV description, the Mermin–Klyshko inequality holds for any two bounded
quantum observables per site, not necessarily dichotomic.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

A Bell-type inequality represents a tight1 linear probabilistic constraint on correlation functions
or joint probabilities that holds under any multipartite correlation experiment admitting a local
hidden variable (LHV) description and may be violated otherwise. Proposed first [1–3] as
tests on the probabilistic description of quantum measurements, these inequalities are now

1 In the present paper, the term a tight LHV constraint means that, in the LHV frame, the bounds established by this
constraint cannot be improved. On the difference between the terms a tight linear LHV constraint and an extreme
linear LHV constraint, see the end of section 2.1.
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widely used in many quantum information schemes and have been intensively discussed in
the literature.

Nevertheless, the most analysed versions [4–18] of Bell-type inequalities refer to either
a multipartite case with two settings and two outcomes per site or a bipartite case with small
numbers of settings and outcomes and we still know a little about Bell-type inequalities for
an arbitrary multipartite correlation experiment. Note, however, that a generalized quantum
measurement on even a qubit may have infinitely many outcomes.

In the literature on quantum information, finding Bell-type inequalities for larger numbers
of settings and outcomes per site is considered to be a computationally hard problem. This
is really the case in the frame of the generally accepted polytope approach [19] where the
construction of a complete set of extreme Bell-type inequalities is associated with finding of all
faces of a highly dimensional polytope. However, many of these faces correspond to trivial2

probabilistic constraints while others can be subdivided into only a few classes, each describing
extreme Bell-type inequalities of the same form. It was also shown [17] computationally that
increasing numbers of settings and outcomes per site, resulting in the appearance of a huge
amount of new faces, leads to only a few (or possibly, no any) new forms of extreme Bell-type
inequalities for joint probabilities. Moreover, in the case of an inifinite number of outcomes
per site, the polytope approach cannot be, in principle, used for the construction of Bell-type
inequalities on joint probabilities of arbitrary events, not necessarily of the product form.

The problem is also complicated by the fact that Bell-type inequalities for correlation
functions and Bell-type inequalities for joint probabilities are usually considered separately
and a general link between the forms of these inequalities in an arbitrary multipartite case has
not been analysed in the literature3.

In the present paper, which is a sequel to4 [20], we make a step in this direction by
introducing a single general representation (theorem 1, section 2), incorporating in a unique
manner all tight linear LHV constraints on either correlation functions or joint probabilities
arising under an S1 × · · · × SN -setting N-partite correlation experiment with outcomes of any
spectral type, discrete or continuous.

Specifying this general representation for correlation functions, we prove (corollaries 1, 2,
section 2.1) that the form of any correlation Bell-type inequality does not depend on a spectral
type of outcomes observed at different sites and is determined only by extremal values of
outcomes at each site.

The general form of bounds in the tight linear LHV constraints on joint probabilities is
specified by corollaries 3, 4 in section 2.2.

All Bell-type inequalities that have been introduced in the literature [4–18] constitute
particular cases of this single general representation. We explicitly demonstrate (section 3) this
for: (a) the Clauser–Horne–Shimony–Holt (CHSH) inequality [2] for correlation functions; (b)
the Clauser–Horne (CH) inequalities [3] for joint probabilities; (c) the Mermin–Klyshko (MK)
inequality [6–8] for correlation functions; (d) the Bell-type inequalities for joint probabilities
found computationally by Collins and Gisin [17]; (e) the Zohren–Gill inequality [18] for joint
probabilities.

Our approach to the derivation of Bell-type inequalities is universal, concise and allows
us to extend the applicability ranges of even the well-known Bell-type inequalities. Applying,

2 In the sense that these constraints hold under any multipartite correlation experiment, not necessarily admitting an
LHV description.
3 In a 2 × 2-setting case, this link was considered by Fine [4] for two outcomes per site and by Masanes [15] for
d � 2 discrete outcomes at each site.
4 In [20], we have consistently formalized the probabilistic description of a multipartite correlation experiment,
performed on systems of any nature and with outcomes of any spectral type, discrete or continuous.
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for example, this appoach to an N-partite correlation experiment, with two settings and any
spectral type of outcomes at each site, we derive the Bell-type inequality (section 3.3) that,
being specified for a quantum case, takes the form of the Mermin–Klyshko (MK) inequality [6–
8] for spin measurements on N qubits. This proves that, for a quantum state ρ onH1⊗· · ·⊗HN,

admitting the 2 × · · · × 2︸ ︷︷ ︸
N

-setting LHV description, the MK inequality holds for any two bounded

quantum observables per site, not necessarily dichotomic. If a Hilbert spaceHn, corresponding
to the nth site, is infinite dimensional then bounded quantum observables measured at this site
may be of any spectral type, discrete or continuous.

2. Linear LHV constraints

Consider an N-partite correlation experiment where an nth party performs Sn � 1
measurements, each specified by a positive integer sn ∈ {1, . . . , Sn} and with outcomes
λ(sn)

n ∈ �(sn)
n of any spectral type, discrete or continuous, not necessarily real numbers.

This correlation experiment is described by the S1 × · · · × SN -setting family5

E = {(s1, . . . , sN) | s1 = 1, . . . , S1, . . . , sN = 1, . . . , SN } (1)

of N-partite joint measurements with joint probability distributions

P
(E)

(s1,...,sN )

(
dλ

(s1)
1 × · · · × dλ

(sN )
N

)
, s1 = 1, . . . , S1, . . . , sN = 1, . . . , SN , (2)

where each distribution P
(E)

(s1,...,sN ) may, in general, depend not only on settings of the
corresponding joint measurement (s1, . . . , sN) but also on a structure of the whole
experiment E .

For an N-partite joint measurement (s1, . . . , sN) ∈ E, let us denote by6〈
�
(
λ

(s1)
1 , . . . , λ

(sN )
N

)〉
:=
∫

�
(
λ

(s1)
1 , . . . , λ

(sN )
N

)
P

(E)

(s1,...,sN )

(
dλ

(s1)
1 × · · · × dλ

(sN )
N

)
(3)

the expected (mean) value of a bounded measurable real-valued function �. In particular,〈
φ1
(
λ

(s1)
1

) · · · · · φN

(
λ

(sN )
N

)〉 = ∫ φ1
(
λ

(s1)
1

) · · · · · φN

(
λ

(sN )
N

)
P

(E)

(s1,...,sN )

(
dλ

(s1)
1 × · · · × dλ

(sN )
N

)
(4)

means the expectation of the product of bounded measurable real-valued functions
φ1
(
λ

(s1)
1

)
, . . . , φN

(
λ

(sN )
N

)
. If outcomes observed at sites: 1 � n1 < · · · < nM � N , are

real-valued and bounded then, for any 2 � M � N, the expectation of the product of
outcomes observed at these sites, that is,〈
λ

(sn1 )
n1 · · · · · λ(snM

)
nM

〉 = ∫ λ
(sn1 )
n1 · · · · · λ

(snM
)

nM
P

(E)

(s1,...,sN )

(
dλ

(s1)
1 × · · · × dλ

(sN )
N

)
, (5)

is referred to as a correlation function. For M = N , this correlation function is called full.
If an N-partite joint measurement (s1, . . . , sN) ∈ E is EPR local7 then its probability

distribution and all marginals of this distribution depend only on settings of the corresponding
measurements at the corresponding sites, that is, P

(E)

(s1,...,sN ) ≡ P(s1,...,sN ) and

P(s1,...,sN )

(
�

(s1)
1 × · · · × �

(sn1−1)

n1−1 × dλ
(sn1 )
n1 × · · · × dλ

(snM
)

nM
× �

(snM +1)

nM +1 × · · · × �
(sN )
N

)
≡ P(sn1 ,...,snM

)

(
dλ

(sn1 )
n1 × · · · × dλ

(snM
)

nM

)
, (6)

5 For details of notation, see sections 2, 3 of [20].
6 For an integral taken over all values of variables, the domain of integration is not usually specified.
7 That is, local in the sense meant originally by Einstein, Podolsky and Rosen in [21]. For details, see section 3 of
[20].
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for any 1 � n1 < · · · < nM � N and any 1 � M � N. In an EPR local case, the probability
distribution of outcomes observed by the nth party under the snth measurement depends only
on a setting of this measurement and we denote it by

P (sn)
n

(
dλ(sn)

n

)
:= P(s1,...,sN )

(
�

(s1)
1 × · · · × �

(sn−1)

n−1 × dλ(sn)
n × �

(sn+1)
n+1 × · · · × �

(sN )
N

)
. (7)

The main ‘qualitative’ statements on a simulation of an S1 × · · · × SN -setting N-partite
correlation experiment in terms of a local hidden variable (LHV) model8 are introduced in
[20]. Below, we specify a single general representation for all linear constraints, on either
correlation functions or joint probabilities, arising in the LHV frame. Particular cases of this
general representation are further considered in corollaries 1–4.

We stress that the EPR locality does not necessarily imply the existence for a multipartite
correlation experiment of an LHV model.

Theorem 1. Let an S1 ×· · ·×SN -setting N-partite correlation experiment (1), with outcomes
λ(sn)

n ∈ �(sn)
n , sn = 1, . . . , Sn, n = 1, . . . , N, of any spectral type, discrete or continuous,

admit an LHV model, conditional or unconditional. Then the tight9 linear unconditional LHV
constraint on expectations:

inf
λ1∈�1,...,λN ∈�N

∑
s1,...,sN

�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
�
∑

s1,...,sN

〈
�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)〉
LHV

� sup
λ1∈�1,...,λN∈�N

∑
s1,...,sN

�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
(8)

holds for any collection
{
�(s1,...,sN )

}
of bounded measurable real-valued functions, where

s1 = 1, . . . , S1, . . . , sN = 1, . . . , SN , and λn := (λ(1)
n , . . . , λ(Sn)

n

)
,�n := �(1)

n × · · · × �(Sn)
n .

In particular, the tight linear LHV constraint on product expectations

inf
ξ1∈�1,...,ξN∈�N

F
(γ )

N (ξ1, . . . , ξN) �
∑

s1,...,sN

γ(s1,...,sN )

〈
φ

(s1)
1

(
λ

(s1)
1

) · · · · · φ
(sN )
N

(
λ

(sN )
N

)〉
LHV

� sup
ξ1∈�1,...,ξN ∈�N

F
(γ )

N (ξ1, . . . , ξN) (9)

is valid for any bounded measurable real-valued functions φ(sn)
n

(
λ(sn)

n

)
,∀ sn,∀ n, and any real

coefficients γ(s1,...,sN ). Here,

F
(γ )

N (ξ1, . . . , ξN) =
∑

s1,...,sN

γ(s1,...,sN )ξ
(s1)
1 · · · · · ξ

(sN )
N (10)

is an N-linear form of real vectors

ξn = (ξ (1)
n , . . . , ξ (Sn)

n

) ∈ R
Sn , n = 1, . . . , N, (11)

and, for any n ∈ {1, . . . , N},
�n = {ξn ∈ R

Sn
∣∣ ξ (sn)

n = φ(sn)
n

(
λ(sn)

n

)
, λ(sn)

n ∈ �(sn)
n , sn = 1, . . . , Sn

} ⊂ R
Sn (12)

is the range of the bounded vector-valued function with components φ(sn)
n

(
λ(sn)

n

)
.

Proof. In view of (3),∑
s1,...,sN

〈
�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)〉
=

∑
s1,...,sN

∫
�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
P

(E)

(s1,...,sN )

(
dλ

(s1)
1 × · · · × dλ

(sN )
N

)
. (13)

8 For the definition of an LHV model, see section 4 of [20].
9 The meaning of the term tight is specified in footnote 1. On the difference between the terms tight and extreme
with respect to a linear LHV correlation constraint, see the end of section 2.1.
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Let family (1) admit an LHV model. Then, by statement (c) of theorem 1 in [20], there exists
a joint probability measure

μE
(
dλ

(1)
1 × · · · × dλ

(S1)
1 × · · · × dλ

(1)
N × · · · × dλ

(SN )
N

)
(14)

of all outcomes observed at all sites that returns each distribution P
(E)

(s1,...,sN ) of family (1) as the
corresponding marginal. Taking this property into account in relation (13), we have∑
s1,...,sN

〈
�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)〉
LHV

=
∫ { ∑

s1,...,sN

�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)}
μE(dλ1 × · · · × dλN), (15)

where, for short, we denote λn = (λ(1)
n , . . . , λ(Sn)

n

)
and �n = �(1)

n × · · · × �(Sn)
n . Considering

the least upper bound of the second line in (15), we derive∑
s1,...,sN

〈
�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)〉
LHV � sup

λ1∈�1,...,λN ∈�N

∑
s1,...,sN

�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
. (16)

The left-hand side bound of (8) is proved quite similarly.
In order to prove (9), let us specify (8) with functions �(s1,...,sN ) of the product form,

�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

) = γ(s1,...,sN )φ
(s1)
1

(
λ

(s1)
1

) · · · · · φ
(sN )
N

(
λ

(sN )
N

)
. (17)

For these functions,

sup
λ1∈�1,...,λN ∈�N

∑
s1,...,sN

�(s1,...,sN )

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
= sup

λ1∈�1,...,λN∈�N

∑
s1,,...,sN

γ(s1,...,sN )φ
(s1)
1

(
λ

(s1)
1

) · · · · · φ
(sN )
N

(
λ

(sN )
N

)
. (18)

Denoting ξ (sn)
n = φ(sn)

n

(
λ(sn)

n

)
and taking into account (10)–(12), we have

sup
λ1∈�1,...,λN ∈�N

∑
γ(s1,...,sN )φ

(s1)
1

(
λ

(s1)
1

) · · · · · φ(sN )
N

(
λ

(sN )
N

) = sup
ξ1∈�1,...,ξN ∈�N

F
(γ )

N (ξ1, . . . , ξN).

(19)

The left-hand side of (9) is proved quite similarly. �

If an S1 × · · · × SN -setting N-partite correlation experiment (1) admits a conditional
LHV model then linear combinations of expectations satisfy not only unconditional LHV
constraints (8), (9) but also their conditional versions—with the corresponding conditional
supremums and infimums. The LHV model considered by Bell in [1] represents an example
of a conditional LHV model.

Depending on a choice of functions, standing in (9), this constraint reduces to either
a general representation for all LHV constraints on correlation functions or a general
representation for all LHV constraints on joint probabilities.

2.1. Constraints on correlation functions

Consider an S1 ×· · ·×SN -setting N-partite correlation experiment with real-valued outcomes
λ(sn)

n ∈ �(sn)
n ⊆ [−1, 1] of any spectral type, discrete or continuous, such that

sup �(sn)
n = 1, inf �(sn)

n = −1, ∀ sn, ∀ n. (20)

Note that the description of any multipartite correlation experiment, with at least two outcomes
at each site, can be reduced to this case.

5
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For this correlation experiment, let us specify the LHV constraint (9) with functions

φ(sn)
n

(
λ(sn)

n

) = λ(sn)
n + z(sn)

n , ∀ sn, ∀ n, (21)

where each z(sn)
n is an arbitrary real number. We derive:∑

s1,...,sN

γ(s1,...,sN )

〈
φ

(s1)
1

(
λ

(s1)
1

) · · · · · φ
(sN )
N

(
λ

(sN )
N

)〉 = ∑
s1,...,sN

γ(s1,...,sN )z
(s1)
1 · · · · · z

(sN )
N

+
∑

1�n1<···<nM�N,
M=1,...,N

∑
sn1 ,...,snM

γ(sn1 ,...,snM
)

〈
λ

(sn1 )
n1 · · · · · λ

(snM
)

nM

〉
, (22)

where10

γ(sn1 ,...,snM
) := γ(s1,...,sN )δM,N + (1 − δM,N)

∑
sn,∀ n�=n1,...,nM

⎧⎨⎩γ(s1,...,sn,...,sN )

∏
n�=n1,...,nM

z(sn)
n

⎫⎬⎭ . (23)

For the N-linear form (10), consider the change of variables: ξn = ηn + zn,∀ n ∈
{1, . . . , N}, where zn := (z(1)

n , . . . , z(Sn)
n ) ∈ R

Sn is the real vector with components given by
real numbers in (21). We have

F
(γ )

N (ξ1, . . . , ξN) =
∑

s1,...,sN

γ(s1,...,sN )z
(s1)
1 · · · · · z(sN )

N

+
∑

1�n1<···<nM�N,
M=1,...,N

∑
sn1 ,...,snM

γ(sn1 ,...,snM
)η

(sn1 )
n1 · · · · · η

(snM
)

nM
. (24)

From (12), (21) it follows that

ξn ∈ �n ⇔ ηn ∈ �n = �(1)
n × · · · × �(Sn)

n ⊆ [ − 1, 1]Sn , (25)

where, due to (20), closure �n of the bounded set �n satisfies the relation {−1, 1}Sn ⊆ �n ⊆
[ − 1, 1]Sn .

Substituting (22), (24) into (9) and taking into account (25), we derive

inf
η1∈�1,...,ηN ∈�N

∑
1�n1<···<nM�N,

M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
�

∑
1�n1<···<nM�N,

M=1,...,N

∑
sn1 ,...,snM

γ(sn1 ,...,snM
)

〈
λ

(sn1 )
n1 · · · · · λ

(snM
)

nM

〉
LHV

� sup
η1∈�1,...,ηN∈�N

∑
1�n1<···<nM�N,

M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
, (26)

where

F
(γ )

M

(
ηn1 , . . . , ηnM

) =
∑

sn1 ,...,snM

γ(sn1 ,...,snM
)η

(sn1 )
n1 · · · · · η

(snM
)

nM
(27)

is an M-linear form of real vectors

η1 = (η(1)
1 , . . . , η

(S1)
1

) ∈ R
S1 , . . . , ηN = (η(1)

N , . . . , η
(SN )
N

) ∈ R
SN .

For a further simplification of constraint (26), we need the following property proved in
the appendix.

10 Here, δM,N = 1 if M = N and δM,N = 0 if M �= N .

6
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Lemma 1. Let, for each bounded set �n ⊆ [−1, 1]Sn , n ∈ {1, . . . , N}, its closure �n satisfy
the relation,

{−1, 1}Sn ⊆ �n ⊆ [−1, 1]Sn , ∀ n = 1, . . . , N. (28)

Then

sup
η1∈�1,...,ηN ∈�N

∑
1�n1<···<nM�N,

M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
= max

η1∈{−1,1}S1 ,...,ηN ∈{−1,1}SN

∑
1�n1<···<nM�N,

M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
, (29)

with a similar expression for infimum.

Substituting (29) into constraint (26), we derive the following corollary of theorem 1.

Corollary 1. Let an S1×· · ·×SN -setting N-partite correlation experiment (1), with real-valued
outcomes

λ(sn)
n ∈ �(sn)

n ⊆ [−1, 1], sup �(sn)
n = 1, inf �(sn)

n = −1, ∀ sn, ∀ n, (30)

of any spectral type, discrete or continuous, admit an LHV model. Then the tight linear LHV
constraint on correlation functions,

min
η1∈{−1,1}S1 ,...,ηN ∈{−1,1}SN

∑
1�n1<···<nM�N,

M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
�

∑
1�n1<···<nM�N,

M=1,...,N

∑
sn1 ,...,snM

γ(sn1 ,...,snM
)

〈
λ

(sn1 )
n1 · · · · · λ

(snM
)

nM

〉
LHV

� max
η1∈{−1,1}S1 ,...,ηN ∈{−1,1}SN

∑
1�n1<···<nM�N,

M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
, (31)

holds for any collection
{
γ(sn1 ,...,snM

)

}
of real coefficients. Here, F

(γ )

M is an M-linear
form defined by (27) and extremums are taken over all 2S1+···+SN vertices of hypercube
[−1, 1]S1+···+SN ⊂ R

S1+···+SN .

From the definition of a Bell-type inequality, given in the introduction, and corollary 1
it follows that the form of any correlation Bell-type inequality does not depend on a spectral
type of outcomes observed at each site, in particular, on their number and is determined only
by extremal values of these outcomes.

If, in particular, γ(sn1 ,...,snM
) = δN,Mγ(s1,...,sN ), then (31) reduces to the tight linear LHV

constraint on the full correlation functions,

min
(η1,...,ηN )∈{−1,1}d

F
(γ )

N (η1, . . . , ηN) �
∑

s1,...,sN

γ(s1,...,sN )

〈
λ

(s1)
1 · · · · · λ

(sN )
N

〉
LHV

� max
(η1,...,ηN )∈{−1,1}d

F
(γ )

N (η1, . . . , ηN), (32)

where d := S1 + · · · + SN. Noting that

F
(γ )

N (η1, . . . , ηn, . . . , ηN) = −F
(γ )

N (η1, . . . ,−ηn, . . . , ηN), (33)

and points

(η1, . . . , ηn, . . . , ηN) ∈ R
d , (η1, . . . ,−ηn, . . . , ηN) ∈ R

d (34)

7
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belong to hypercube [−1, 1]d ⊂ R
d simultaneously, we derive

− min
(η1,...,ηN )∈{−1,1}d

F
(γ )

N (η1, . . . , ηN) = max
(η1,...,ηN )∈{−1,1}d

F
(γ )

N (η1, . . . , ηN)

= max
(η1,...,ηN )∈{−1,1}d

∣∣F (γ )

N (η1, . . . , ηN)
∣∣. (35)

Substituting (35) into (32), we come to the following corollary of theorem 1.

Corollary 2. Let an S1 × · · · × SN -setting N-partite correlation experiment (1), with real-
valued outcomes λ(sn)

n ∈ �(sn)
n ⊆ [−1, 1], sup �(sn)

n = 1, inf �(sn)
n = −1,∀ sn,∀ n, of any

spectral type, discrete or continuous, admit an LHV model. Then the full correlation functions
satisfy the tight linear LHV constraint∣∣∣∣∣ ∑

s1,...,sN

γ(s1,...,sN )

〈
λ

(s1)
1 · · · · · λ(sN )

N

〉
LHV

∣∣∣∣∣ � max
η1∈{−1,1}S1 ,...,

ηN∈{−1,1}SN

∣∣F (γ )

N (η1, . . . , ηN)
∣∣, (36)

for any real coefficients γ(s1,...,sN ).

If a correlation experiment admits a conditional LHV model then, in addition to (31),
(36), the correlation functions satisfy also the conditional versions of these constraints—with
the corresponding conditional extremums. The original Bell inequality, derived by Bell in
[1] in the frame of the conditional LHV model, represents an example of a conditional LHV
constraint on the full correlation functions.

We stress that, in corollaries 1, 2, the term a tight linear LHV constraint does not mean
an extreme linear LHV constraint. The difference between these two terms is clearly seen due
to the geometric interpretation of, say, constraint (36) in terms of the polytope approach [19].

Namely, for any choice of coefficients γ(s1,...,sN ) in constraint (36) represented otherwise
as

− max
(η1,...,ηN )∈{−1,1}d

∣∣F (γ )

N (η1, . . . , ηN)
∣∣ � ∑

s1,...,sN

γ(s1,...,sN )

〈
λ

(s1)
1 · · · · · λ

(sN )
N

〉
LHV

� max
(η1,...,ηN )∈{−1,1}d

∣∣F (γ )

N (η1, . . . , ηN)
∣∣, (37)

the right-hand-side (or the left-hand-side) inequality describes the half-space, defined by the
hyperplane passing outside of the corresponding polytope via at least one of its vertices. A
tight linear LHV inequality becomes an extreme one whenever this hyperplane describes a
face of the corresponding polytope.

2.2. Constraints on joint probabilities

For an S1 × · · · × SN -setting N-partite correlation, with at least Qn + 1 (possibly, infinitely
many) outcomes at each site, let us specify constraint (9) with functions11

φ(sn)
n

(
λ(sn)

n

) =
∑

qn=1,...,Qn

{
τ (sn,qn)
n χ

D
(sn,qn)
n

(
λ(sn)

n

)
+ z(sn,qn)

n

}
, (38)

where τ
(sn,qn)
n and z

(sn,qn)
n are arbitrary real numbers and D

(sn,qn)
n ⊂ �(sn)

n ,D
(sn,qn)
n �= ∅, qn ∈

{1, . . . ,Qn}, are any mutually disjoint subsets: D
(sn,qn)
n ∩ D

(sn,q
′
n)

n = ∅,∀ qn �= q ′
n, observed

under the snth measurement at the nth site and such that ∪qn
D

(sn,qn)
n �= �(sn)

n .

11 Here, χD(λ), λ ∈ �, is an indicator function of a subset D ⊆ �, defined by relations: χD(λ) = 1 if λ ∈ D and
χD(λ) = 0 if λ /∈ D.
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Substituting these functions into the LHV constraint (9), making transformations similar
to those in section 2.1 and renaming coefficients, we come to the following corollary of
theorem 1.

Corollary 3. Let an S1 × · · · × SN -setting N-partite correlation experiment (1), satisfying the
EPR locality12 and with at least (Qn + 1) outcomes at each nth site, admit an LHV model.
Then the tight linear LHV constraint on joint probabilities

min
η1∈�1,...,ηN∈�N

∑
1�n1,...,nM�N,

M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
�

∑
1�n1<···<nM�N,

M=1,...,N

∑
sn1 ,...,snM

,
qn1 ,...,qnM

γ
(qn1 ,...,qnM

)

(sn1 ,...,snM
) P(sn1 ,...,snM

)

(
D

(sn1 ,qn1 )
n1 × · · · × D

(snM
,qnM

)
nM

)
� max

η1∈�1,...,ηN ∈�N

∑
1�n1,...,nM�N,

M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
(39)

holds for an arbitrary collection
{
γ

(qn1 ,...,qnM
)

(sn1 ,...,snM
)

}
of real coefficients and any events D

(sn,qn)
n ⊂

�(sn)
n ,D

(sn,qn)
n �= ∅, qn = 1, . . . , Qn, observed under the snth measurement at the nth site,

such that, for any Qn � 2, these events are mutually incompatible: D
(sn,qn)
n ∩ D

(sn,q
′
n)

n =
∅,∀ qn �= q ′

n, and satisfy the relation

∪qn=1,...,Qn
D(sn,qn)

n �= �(sn)
n . (40)

In (39),

F
(γ )

M

(
ηn1 , . . . , ηnM

) =
∑

sn1 ,...,snM
,

qn1 ,...,qnM

γ
(qn1 ,...,qnM

)

(sn1 ,...,snM
) η

(sn1 ,qn1 )
n1 · · · · · η

(snM
,qnM

)
nM

(41)

is an M-linear form of real vectors ηn ∈ R
SnQn , with components η

(sn,qn)
n , and

�n =
⎧⎨⎩ηn ∈ {0, 1}SnQn

∣∣∣∣∣ ∑
qn=1,...,Qn

η(sn,qn)
n ∈ {0, 1},∀ sn = 1, . . . , Sn

⎫⎬⎭ , (42)

for any n = 1, . . . , N.

For an S1 × S2-setting bipartite correlation experiment, the LHV constraint (39) takes the
form

min
η1∈�1,η2∈�2

{
F

(γ )

2 (η1, η2) + F
(γ1)

1 (η1) + F
(γ2)

1 (η2)
}

�
∑
s1,s2,
q1,q2

γ
(q1,q2)

(s1,s2)
P(s1,s2)

(
D

(s1,q1)

1 × D
(s2,q2)

2

)
+
∑
s1,q1

γ
(s1,q1)

1 P
(s1)
1

(
D

(s1,q1)

1

)
+
∑
s2,q2

γ
(s2,q2)

2 P
(s2)
2

(
D

(s2,q2)

2

)
� max

η1∈�1,η2∈�2

{
F

(γ )

2 (η1, η2) + F
(γ1)

1 (η1) + F
(γ2)

1 (η2)
}
, (43)

where: (i) γ = (
γ

(q1,q2)

(s1,s2)

)
is a real matrix of dimension S1Q1 × S2Q2; (ii) γ1 ∈ R

S1Q1 , γ2 ∈
R

S2Q2 are any real vectors with components γ
(s1,q1)

1 , γ
(s2,q2)

2 ; (iii) F
(γ )

2 is a bilinear form and

12 See condition (6) and notation (7).
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F
(γ1)

1 , F
(γ2)

1 are 1-linear forms, given by:

F
(γ )

2 (η1, η2) =
∑
s1,s2,
q1,q2

γ
(q1,q2)

(s1,s2)
η

(s1,q1)

1 η
(s2,q2)

2 = (η1, γ η2),

F
(γ1)

1 (η1) =
∑
s1,q1

γ
(s1,q1)

1 η
(s1,q1)

1 = (η1, γ1), (44)

F
(γ2)

1 (η2) =
∑
s2,q2

γ
(s2,q2)

2 η
(s2,q2)

2 = (η2, γ2).

Here, (·, ·) denotes the scalar product on the corresponding space R
SQ.

Finally, let us specify the general form of tight LHV constraints on joint probabilities of
arbitrary events, not necessarily of the product form. Taking in constraint (8) functions

�s

(
λ

(s1)
1 , . . . , λ

(sN )
N

) =
∑
qs

γ (qs )
s χ

D
(qs )
s

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
, (45)

where D
(qs)
s ⊆ �

(s1)
1 × · · · × �

(sN )
N , qs = 1, . . . , Qs, are any events observed under a joint

measurement s := (s1, . . . , sN), and χ
D

(qs )
s

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
is an indicator function13 of a

subset D
(qs)
s , we derive the following corollary of theorem 1.

Corollary 4. Let an S1 × · · · × SN -setting N-partite correlation experiment (1) admit an LHV
model. Then the tight linear LHV constraint on joint probabilities:

inf
λ1∈�1,...,λN ∈�N

∑
qs ,s

γ (qs )
s χ

D
(qs )
s

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
�
∑
qs ,s

γ (qs )
s Ps

(
D(qs)

s

)
� sup

λ1∈�1,...,λN∈�N

∑
qs ,s

γ (qs )
s χ

D
(qs )
s

(
λ

(s1)
1 , . . . , λ

(sN )
N

)
(46)

holds for any real coefficients γ
(qs)
s and any events D

(qs)
s ⊆ �

(s1)
1 ×· · ·×�

(sN )
N , qs = 1, . . . , Qs,

observed under an N-partite joint measurement s := (s1, . . . , sN) in family (1).

If, for example, we take in (46) coefficients, singling out only one joint measurement:
γ

(q̃s )

s̃ = δs,̃s ,∀ q̃s , and events D
(qs)
s ⊆ �

(s1)
1 × · · ·×�

(sN )
N , that are incompatible and satisfy the

relation ∪qs
D

(qs)
s = �

(s1)
1 × · · · × �

(sN )
N , then (46) reduces to the relation

∑
qs

Ps

(
D

(qs)
s

) = 1,

fulfilled under any measurement.

3. Examples

The general representation (8) and its specifications in corollaries 1–4 incorporate as particular
cases all Bell-type inequalities14 for either correlation functions or joint probabilities that have
been introduced in the literature.

In this section, we explicitly demonstrate this for the most known Bell-type inequalities.
Namely, for: (1) the Clauser–Horne–Shimony–Holt (CHSH) inequality [2] for correlation
functions; (2) the Clauser–Horne (CH) inequalities [3] for joint probabilities; (3) the Mermin–
Klyshko (MK) inequality [6–8] for correlation functions; (4) the Bell-type inequalities for joint
probabilities found computationally [17] by Collins and Gisin; (5) the Bell-type inequality for
joint probabilities introduced recently by Zohren and Gill [18].

13 See footnote 11.
14 For the definition of a Bell-type inequality, see the beginning of Introduction.

10



J. Phys. A: Math. Theor. 41 (2008) 445304 E R Loubenets

Specifying constraint (46) for appropriate coefficients and events, it is also easy to derive
all Bell-type inequalities derived by Collins, Gisin, Linden, Massar and Popescu in [13].

We stress that our approach allows us to derive all these inequalities in a new unified
manner and also to extend the applicability ranges of even the well-known Bell-type
inequalities.

3.1. The Clauser–Horne–Shimony–Holt (CHSH) inequality

For a 2 × 2-setting bipartite correlation experiment, with real-valued outcomes in [−1, 1] of
any spectral type, discrete or continuous, let us specify the tight LHV constraint (36) with
coefficients γ(s1,s2) of the CHSH form [2]

(
γ CHSH

(s1,s2)

) = ±
(

1 1
1 −1

)
, (47)

where the minus sign may equivalently stand in any matrix cell.
Note that, in a bipartite case, two parties are traditionally named as Alice and Bob and

their measurements are usually specified by parameters ai and bk. Therefore, in the case of
a bipartite correlation experiment, we further replace our general notations of section 2 for
coefficients, outcomes and events by the following ones:

γ
(q1,q2)

(s1,s2)
→ γ

(j,l)

ik , λ
(s1)
1 → λ

(ai )
1 , λ

(s2)
2 → λ

(bk)
2 , i = 1, . . . , S1, k = 1, . . . , S2,

D
(s1,q1)

1 → A
(j)

i , D
(s2,q2)

2 → B
(l)
k , j = 1, . . . , Q1, l = 1, . . . , Q2.

(48)

Here, for concreteness, we refer site ‘1’ to Alice and site ‘2’ to Bob. For matrix
γ = (

γ
(j,l)

ik

) ≡ (γij,kl) of dimension S1Q1 × S2Q2, the double indices (i, j) and (k, l)

numerate, correspondingly, rows and columns in the order,

(1, 1), (1, 2) . . . , (1,Q1), . . . , (S1, 1), . . . , (S1,Q1);
(1, 1), (1, 2) . . . , (1,Q2), . . . , (S2, 1), . . . , (S2,Q2),

(49)

respectively, and the element γ
(j,l)

ik stands in γ at the intersection of row (i, j) and column
(k, l).

For the CHSH coefficients (47), the maximum of the absolute value of the bilinear form

F CHSH
2 (η1, η2) = ±{η(1)

1 η
(1)
2 + η

(1)
1 η

(2)
2 + η

(2)
1 η

(1)
2 − η

(2)
1 η

(2)
2

}
(50)

over η1 = (η(1)
1 , η

(2)
1

) ∈ {−1, 1}2, η2 = (η(1)
2 , η

(2)
2

) ∈ {−1, 1}2 is equal to

max
(η1,η2)∈{−1,1}4

∣∣F CHSH
2 (η1, η2)

∣∣ = 2. (51)

Substituting (51) into (36), we come to the following tight LHV constraint on correlation
functions: ∣∣〈λ(a1)

1 λ
(b1)
2

〉
+
〈
λ

(a1)
1 λ

(b2)
2

〉
+
〈
λ

(a2)
1 λ

(b1)
2

〉− 〈λ(a2)
1 λ

(b2)
2

〉∣∣
LHV � 2, (52)

where minus sign may equivalently stand before any of four terms. This constraint
holds for outcomes in [−1, 1] of any spectral type, discrete or continuous, and constitutes
the Clauser–Horne–Shimony–Holt (CHSH) inequality, derived originally in [2] for two
±1-valued outcomes per site and further proved [5] by Bell to hold for any outcomes∣∣λ(ai )

1

∣∣, ∣∣λ(bk)
2

∣∣ � 1, i, k = 1, 2.

11
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3.2. The Clauser–Horne (CH) inequalities

For a 2×2-setting bipartite correlation experiment, let us specify constraint (9) with the CHSH
coefficients (47) and ±1-valued functions

φ
(i)
1

(
λ

(ai )
1

) = 2χAi

(
λ

(ai )
1

)− 1, i = 1, 2,

φ
(k)
2

(
λ

(bk)
2

) = 2χBk

(
λ

(bk)
2

)− 1, k = 1, 2,
(53)

where Ai ⊆ �
(ai)
1 and Bk ⊆ �

(s2)
2 are any events observed by Alice and Bob under the

corresponding measurements.
For these functions, the product expectations take the form,〈

φ
(i)
1

(
λ

(ai )
1

)
φ

(k)
2

(
λ

(bk)
2

)〉 = 1 + 4P(ai ,bk)(Ai × Bk) − 2P(ai ,bk)

(
Ai × �

(bk)
2

)
− 2P(ai ,bk)

(
�

(ai)
1 × Bk

)
, (54)

and ranges (12) satisfy the relation: �1,�2 ⊆ {−1, 1}2. The latter implies,

max
ξ1∈�1,ξ2∈�2

F CHSH
2 (ξ1, ξ2) � max

(ξ1,ξ2)∈{−1,1}4
F CHSH

2 (ξ1, ξ2),

min
ξ1∈�1,ξ2∈�2

F CHSH
2 (ξ1, ξ2) � min

(ξ1,ξ2)∈{−1,1}4
F CHSH

2 (ξ1, ξ2).
(55)

Taking into account (35), (51), we have:

max
(ξ1,ξ2)∈{−1,1}4

F CHSH
2 (ξ1, ξ2) = − min

(ξ1,ξ2)∈{−1,1}4
F CHSH

2 (ξ1, ξ2)

= max
(ξ1,ξ2)∈{−1,1}4

∣∣F CHSH
2 (ξ1, ξ2)

∣∣
= 2. (56)

Substituting (54)–(56) into (9) and noting that, for EPR local measurements of Alice and Bob,
the marginal probabilities in (54) have the form15

P(ai ,bk)

(
Ai × �

(bk)
2

) = P
(ai )
1 (Ai), P(ai ,bk)(�

(ai )
1 × Bk) = P

(bk)
2 (Bk), (57)

we come to the following LHV constraint on joint probabilities:

−1 � P(a1,b1)(A1 × B1) + P(a1,b2)(A1 × B2) + P(a2,b1)(A2 × B1)

−P(a2,b2)(A2 × B2) − P
(a1)
1 (A1) − P

(b1)
2 (B1) � 0.

(58)

This LHV constraint is valid for any events Ai ⊆ �
(ai)
1 , Bk ⊆ �

(bk)
2 , observed by Alice and

Bob under measurements ai, i = 1, 2, and bk, k = 1, 2, respectively, and corresponds to the
Clauser–Horne (CH) inequalities [3] on joint probabilities.

We stress that, in (58), outcome events may be arbitrary, in particular, certain:
Ai = �

(ai)
1 , Bk = �

(bk)
2 , or impossible: Ai = ∅, Bk = ∅. This implies that, in the form

(58), the CH inequalities incorporate as particular cases all positive probability relations
considered in the literature16 usually separately. If, for example, A2 = B1 = ∅ then (58)
reduces to the positive probability relation −1 � P(a1,b2)(A1 × B2) − P

(a1)
1 (A1) � 0, fulfilled

under any bipartite joint measurement.
Note also that the CH inequalities (58) are equivalent17 to the CHSH inequality (52) only

in the case of two ±1-valued outcomes at each site and the choice in (58) of uncertain possible
events, say Ai = {1}, Bk = {1}, for any i, k ∈ {1, 2}.
15 See condition (6) and notation (7).
16 See, for example, in [4].
17 In the sense that the validity of the CHSH inequality on correlation functions implies the validity of the CH
inequalities on joint probabilities and vice versa.
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3.3. The Mermin–Klyshko (MK) inequality

For a 2 × · · · × 2︸ ︷︷ ︸
N

-setting N-partite correlation experiment, with outcomes in [−1, 1] of any

spectral type, discrete or continuous, let us specify constraint (36) with coefficients γ(s1,...,sN )

defined by the recursion

γ(s1,...,sn−1,sn) = γ(s1,...,sn−1) + (δsn,1 − δsn,2)γ(s1,...,sn−1), 3 � n � N, (59)

where
(
γ(s1,s2)

) = (γ CHSH
(s1,s2)

) = (1 1
1 −1

)
and sn is the element of set {1, 2}\{sn}.

In order to find the maximum of the absolute value of the N-linear form

F
(γ )

N (η1, . . . , ηN) =
∑

s1,...,sN =1,2

γ(s1,...,sN )η
(s1)
1 · · · · · η

(sN )
N (60)

over vectors η1 ∈ {−1, 1}2, . . . , ηn ∈ {−1, 1}2, let us introduce n-linear forms, corresponding
to the nth step in the recursion (59)

F (γ )
n (η1, . . . , ηn) :=

∑
s1,...,sn=1,2

γ(s1,...,sn)η
(s1)
1 · · · · · η(sn)

n ,

F
(γ )

n (η1, . . . , ηn) :=
∑

s1,...,sn=1,2

γ(s1,...,sn)η
(s1)
1 · · · · · η(sn)

n .
(61)

Substituting (59) into (61), we have

F (γ )
n (η1, . . . , ηn) = (η(1)

n + η(2)
n

)
F

(γ )

n−1(η1, . . . , ηn−1)

+
(
η(1)

n − η(2)
n

)
F

(γ )

n−1(η1, . . . , ηn−1), n � 3, (62)

where

F
(γ )

2 (η1, η2) = η
(1)
1 η

(1)
2 + η

(1)
1 η

(2)
2 + η

(2)
1 η

(1)
2 − η

(2)
1 η

(2)
2 ,

F
(γ )

2 (η1, η2) = −η
(1)
1 η

(1)
2 + η

(1)
1 η

(2)
2 + η

(2)
1 η

(1)
2 + η

(2)
1 η

(2)
2 .

(63)

Taking into account (51), (62), we prove by induction in n the following relation:

max
(η1,...,ηN )∈{−1,1}2N

∣∣F (γ )

N (η1, . . . , ηN)
∣∣ = 2N−1, N � 2. (64)

Substituting (64) into (36), we come to the following 2 × · · · × 2︸ ︷︷ ︸
N

-setting tight LHV constraint

on the full correlation functions:∣∣∣∣∣∣
∑

s1,...,sN ∈{1,2}
γ(s1,...,sN )

〈
λ

(s1)
1 · · · · · λ

(sN )
N

〉
LHV

∣∣∣∣∣∣ � 2N−1, (65)

where coefficients γ(s1,...,sN ) are given by (59). For N = 2, this inequality reduces to the CHSH
inequality (52).

Let us now specify constraint (65) for a 2 × · · · × 2︸ ︷︷ ︸
N

-setting correlation experiment, with

outcomes in [−1, 1] of any spectral type, discrete or continuous, performed on a quantum
state ρ on a complex separable Hilbert space H1 ⊗ · · · ⊗ HN, possibly infinite dimensional.

In the quantum case18,〈
λ

(s1)
1 · · · · · λ(sN )

N

〉
ρ

=
∫

λ
(s1)
1 · · · · · λ

(sN )
N tr

[
ρ
{
M(s1)

1

(
dλ

(s1)
1

)⊗ · · · ⊗ M(sN )
N

(
dλ

(sN )
N

)}]
= tr

[
ρ(X

(s1)
1 ⊗ · · · ⊗ X

(sN )
N

)]
, (66)

18 Here, M(sn)
n (dλ

(sn)
n ) is a positive operator-valued (POV) measure describing the snth measurement at the nth site,

see, for example, section 3.1 in [20].
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where

X(sn)
n =

∫
λ(sn)

n M(sn)
n

(
dλ(sn)

n

)
(67)

is a bounded quantum observable on Hn, observed under the snth measurement at the nth site
and with the operator norm

∥∥X(sn)
n

∥∥ � 1. If a Hilbert space Hn, corresponding to the nth site,
is infinite dimensional then observables X(sn)

n , sn = 1, 2, may be of any spectral type, discrete
or continuous.

From (66), (59) it follows that, in the quantum case,∑
s1,...,sN

γ(s1,...,sN )

〈
λ

(s1)
1 · · · · · λ(sN )

N

〉
ρ

= tr[ρBN ], (68)

where BN is the bounded quantum observable19 on H1 ⊗ · · · ⊗ HN , defined by the recursion

Bn = (X(1)
n + X(2)

n

)⊗ Bn−1 +
(
X(1)

n − X(2)
n

)⊗ B̃n−1, 2 � n � N,

B1 = X
(1)
1 , B̃1 = X

(2)
1 ,

(69)

where B̃n results from Bn by interchanging all X
(sk)
k to X

(sk)
k , sk = 1, 2; k = 1, ...n.

Substituting (68) into (65), we come to the quantum version

|tr[ρBN ]|LHV � 2N−1 (70)

of the tight LHV constraint (65). By its form, this quantum LHV constraint coincides with
the Mermin–Klyshko (MK) inequality, derived originally20 [6–8] for the LHV description of
spin measurements on N qubits and still discussed in the literature (see, for example, in [10])
only for a N-partite case with two dichotomic observables per site.

Our derivation of (70) shows that, for an N-partite quantum state ρ on H1 ⊗ · · · ⊗ HN ,
possibly infinite dimensional, admitting the 2 × · · · × 2︸ ︷︷ ︸

N

-setting LHV description21, the MK

inequality holds for arbitrary two quantum observables per site, not necessarily dichotomic.
If Hn is infinite dimensional then the quantum observables measured at the nth site may be of
any spectral type, discrete or continuous.

3.4. The Collins–Gisin inequalities

Let us now demonstrate that the tight LHV constraint (43) on joint probabilities incorporates
as particular cases the extreme bipartite Bell-type inequalities found by Collins and Gisin [17]
computationally. For short, we consider here the derivation of only two inequalities reported
in [17].

For a 4 × 4-setting bipartite correlation experiment, with at least two outcomes per site,
let us specify (43) with Q1 = Q2 = 1, matrix

γ = (γik) =

⎛⎜⎜⎝
1 1 1 1
1 1 1 −1
1 1 −1 0
1 −1 0 0

⎞⎟⎟⎠ (71)

19 BN represents a generalization of the so-called Bell operator for spin measurements on N qubits.
20 Mermin’s inequality [6] and the similar inequality of Ardehali [7] distinguish between even and odd values of N.
For an odd N, the magnitude of the maximal violation of Mermin’s inequality in a quantum case is higher than that of
Ardehali. For an even N, the situation is opposite. Belinskii and Klyshko [8] proposed the single inequality, which
is maximally violated, in comparison with those in [6, 7], for any N, even or odd. This inequality is usually referred
to as the Mermin–Klyshko inequality.
21 See section 5 of [20].
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and vectors

γ1 = (−1, 0, 0, 0), γ2 = (−3,−2,−1, 0). (72)

In this case, sets (42) take the form, �1 = �2 = {0, 1}4 , and maximum

max
η1∈{0,1}4,η2∈{0,1}4

{(η1, γ η2) + (η1, γ1) + (η2, γ2)} = 0, (73)

achieved at, for example, η1 = (1, 1, 1, 1), η2 = (1, 1, 1, 1). Substituting (71)–(73) into the
right-hand-side inequality of (43), we come to the tight LHV constraint:∑

i,k

γikP(ai ,bk)(Ai × Bk) − P
(a1)
1 (A1) − 3P

(b1)
2 (B1) − 2P

(b2)
2 (B2) − P

(b3)
2 (B3) � 0, (74)

corresponding to the extreme Bell-type inequality I4422 � 0 , introduced in [17,
equation (38)], and valid for any events: Ai ⊂ �

(ai)
1 , Ai �= ∅, Bk ⊂ �

(bk)
2 , Bk �= ∅, observed

by Alice and Bob under the corresponding measurements.
For a 2 × 2-setting bipartite correlation experiment, with at least three outcomes per site,

let us also specify (43) with Q1 = Q2 = 2, vectors

γ1 = γ2 = (−1,−1, 0, 0) (75)

and matrix

γ = (γ
(j,l)

ik ) =

⎛⎜⎜⎝
1 1 0 1
1 0 1 1
0 1 0 −1
1 1 −1 −1

⎞⎟⎟⎠ , (76)

where the element γ
(j,l)

ik stands22 in γ at the intersection of row (i, j) and column (k, l).
In this case, sets (42) are given by:

�1 =
⎧⎨⎩η1 ∈ {0, 1}4

∣∣∣∣∣ ∑
j=1,2

η
(i,j)

1 ∈ {0, 1}, i = 1, 2

⎫⎬⎭ ,

�2 =
{

η2 ∈ {0, 1}4

∣∣∣∣∣ ∑
l=1,2

η
(k,l)
2 ∈ {0, 1}, k = 1, 2

}
,

(77)

and

max
η1∈�1,η2∈�2

{(η1, γ η2) + (η1, γ1) + (η2, γ2)} = 0, (78)

achieved at, for example, η1 = (1, 0, 0, 1) and η2 = (1, 0, 0, 0).

Substituting (76)–(78) into the right-hand-side inequality of (43), we derive the tight LHV
constraint∑
i,j,k,l

γ
(j,l)

ik P(ai ,bk)

(
A

(j)

i × B
(l)
k

)− P
(a1)
1

(
A

(1)
1

)− P
(a1)
1

(
A

(2)
1

)− P
(b1)
2

(
B

(1)
1

)− P
(b1)
2

(
B

(2)
1

)
� 0,

(79)

corresponding to the extreme Bell-type inequality I2233 � 0, introduced analytically in
[13, 14] and further confirmed computationally in [17, equation (39)]. This inequality is
valid for any two incompatible events

A
(j)

i ⊂ �
(ai)
i , A

(j)

i �= ∅, j = 1, 2, A
(1)
i ∩ A

(2)
i = ∅, A

(1)
i ∪ A

(2)
i �= �

(ai)
i , (80)

observed by Alice under measurement ai, i = 1, 2, and any two incompatible events

B
(l)
k ⊆ �

(bk)
2 , B

(l)
k �= ∅, l = 1, 2, B

(1)
k ∩ B

(2)
k = ∅, B

(1)
k ∪ B

(2)
k �= �

(bk)
2 , (81)

observed by Bob under measurement bk, k = 1, 2.

22 See also (49).
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3.5. The Zohren–Gill inequality

Finally, consider a 2 × 2-setting bipartite correlation experiment with K real-valued outcomes
per site: λ

(s1)
1 , λ

(s2)
2 ∈ � = {1, . . . , K}, where 2 � K � ∞.

For this case, let us specify the tight linear LHV constraint (46) with γ(s1,s2) = 1, q(s1,s2) =
1,∀ s1, s2 ∈ {1, 2}, and events:

D(s1,s2) = {λ(s2)
2 > λ

(s1)
1

} ⊂ � × �, if s1 = s2 ∈ {1, 2},
D(s1,s2) = {λ(s1)

1 > λ
(s1)
2

} ⊂ � × �, if s1 �= s2 ∈ {1, 2}.
(82)

We have

χD(s1 ,s2)

(
λ

(s1)
1 , λ

(s2)
2

) = θ
(
λ

(s2)
2 − λ

(s1)
1

)
, if s1 = s2 ∈ {1, 2},

χD(s1 ,s2)

(
λ

(s1)
1 , λ

(s2)
2

) = θ
(
λ

(s1)
1 − λ

(s2)
2

)
, if s1 �= s2 ∈ {1, 2},

(83)

where θ(x − y) = 1, for x > y, and θ(x − y) = 0, for x � y. Substituting (83) into the
left-hand-side inequality of the LHV constraint (46), we derive the following expression for

inf
{
θ
(
λ

(1)
2 − λ

(1)
1

)
+ θ
(
λ

(1)
1 − λ

(2)
2

)
+ θ
(
λ

(2)
2 − λ

(2)
1

)
+ θ
(
λ

(2)
1 − λ

(1)
2

)} = 1 (84)

over all λ
(1)
1 , λ

(2)
1 , λ

(1)
2 , λ

(2)
2 ∈ {1, . . . , K}, and, therefore, the following tight LHV constraint,

P(1,1)

({
λ

(1)
2 > λ

(1)
1

})
+ P(1,2)

({
λ

(1)
1 > λ

(2)
2

})
+ P(2,2)

({
λ

(2)
2 > λ

(2)
1

})
+ P(2,1)

({
λ

(2)
1 > λ

(1)
2

})
� 1, (85)

which is valid for any number K of outcomes per site, in particular, for inifinitely many
outcomes (K = ∞) at each site. This tight LHV constraint constitutes the Bell-type inequality
derived quite differently in [18].

4. Conclusions

In the present paper, which is a sequel to [20], we have introduced in rigorous mathematical
terms a single general representation for all tight linear LHV constraints arising under an
S1 × · · · × SN -setting N-partite correlation experiment with outcomes of any spectral type,
discrete or continuous. For correlation functions and joint probabilities, this representation is
formulated in terms of multilinear forms and this allows us:

• to prove in a general setting that the form of any correlation Bell-type inequality does not
depend on a spectral type of outcomes at different sites, in particular, on their numbers
and is determined only by extremal values of outcomes at each site,

• to specify the general form of bounds in Bell-type inequalities for joint probabilities;
• to present the new concise proofs for all the most known Bell-type inequalities introduced

in the literature ever since the seminal publication of Bell [1] and also to extend the
applicability ranges of some of these inequalities.

Note that the LHV constraints, reproduced in sections 3.1–3.4, are not only tight, but, as is
proved in [4, 10, 17], respectively, each of these inequalities is extreme for the corresponding
setting of a correlation experiment. However, for an arbitrary multipartite case, there does not
still exist an effective general way to single out extreme Bell-type inequalities. Though the
polytope approach is very useful from the descriptive-geometrical point of view, there is not
much sense of finding of extreme Bell-type inequalities by listing of a huge number of faces of
a highly dimensional polytope whereas many of these faces correspond to trivial probabilistic
constraints while others can be subdivided into only a few classes different by their form.
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The approach, introduced in the present paper, is based on general properties of multilinear
forms and this points to a possibility of a new direction in finding extreme Bell-type inequalities
for an arbitrary multipartite case. This problem will be analysed in our further publications.

Appendix

Proof of lemma 1. For the real-valued function

W(η) :=
∑

1�n1<···<nM�N,
M=1,...,N

F
(γ )

M

(
ηn1 , . . . , ηnM

)
(A.1)

continuous on R
S1+···+SN , its supremum and infimum over η = (η1, . . . , ηN) ∈ �1×· · ·×�N ⊆

[−1, 1]S1+···+SN have the form:

sup
η∈�1×···×�N

W(η) = sup
η∈�1×···×�N

W(η), inf
η∈�1×···×�N

W(η) = inf
η∈�1×···×�N

W(η), (A.2)

where

sup
η∈�1×···×�N

W(η) = max
η∈�1×···×�N

W(η), inf
η∈�1×···×�N

W(η) = min
η∈�1×···×�N

W(η). (A.3)

Therefore,

sup
η∈�1×···×�N

W(η) = max
η∈�1×···×�N

W(η), inf
η∈�1×···×�N

W(η) = min
η∈�1×···×�N

W(η). (A.4)

From relation (28) it follows:

max
η∈{−1,1}d

W(η) � max
η∈�1×···×�N

W(η) � max
η∈[−1,1]d

W(η),

min
η∈[−1,1]d

W(η) � min
η∈�1×···×�N

W(η) � min
η∈{−1,1}d

W(η),
(A.5)

where d = S1 + · · · + SN . Note that η = (
η

(1)
1 , . . . , η

(S1)
1 , . . . , η

(1)
N , . . . , η

(SN )
N

) ∈ R
d and

function W(η) is twice continuously differentiable on R
d with the second partial derivatives

∂2W(η)

∂
(
η

(sn)
n

)2 = 0. (A.6)

Therefore, function W(η), η ∈ R
d , is harmonic23. From the maximum principle for harmonic

functions it follows that the maximum and the minimum of function W(η) in the hypercube
Vd := [−1, 1]d ⊂ R

d are reached on boundary �d of Vd , that is:

max
η∈[−1,1]d

W(η) = max
η∈�d

W(η), min
η∈[−1,1]d

W(η) = min
η∈�d

W(η). (A.7)

Since the boundary �d of Vd represents the union of (d − 1)-dimensional hypercubes
V

(k)
d−1, k = 1, . . . , 2d, the right-hand sides of relations (A.7) are given by

max
η∈�d

W(η) = max
k=1,...,2d

{ max
η∈V

(k)
d−1

W(η)}, min
η∈�d

W(η) = min
k=1,...,2d

{ min
η∈V

(k)
d−1

W(η)}. (A.8)

Further, on each (d − 1)-dimensional hypercube V
(k)
d−1, function W(η)|

V
(k)
d−1

, depending
on (d − 1) components of η, is harmonic and, therefore, reaches its maximum (minimum) on
boundary �

(k)
d−1 of V

(k)
d−1. The latter, in turn, consists of (d − 2)-dimensional hypercubes V

(m)
d−2.

23 On this notion, see any textbook on equations of mathematical physics.
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Since, in total, the boundary �d contains 4d(d − 1) of (d − 2)-dimensional hypercubes V
(m)
d−2,

relation (A.8) reduces to:

max
η∈�d

W(η) = max
k=1,...,2d

{ max
η∈V

(k)
d−1

W(η)}

= max
m=1,...,4d(d−1)

{ max
η∈V

(m)
d−2

W(η)}, (A.9)

with a similar relation for minimum.
Recall that the number of l-dimensional hypercubes on the boundary �d is equal to

d!

(d − l)!
2d−l , (A.10)

in particular, d · 2d−1 edges (‘1’-dimensional hypercubes) and 2d vertices (‘0’-dimensional
hypercubes).

Continuing to reduce the dimension of hypercubes in formula (A.9), we finally come to
the maximum (minimum) over all ‘0’-dimensional hypercubes, that is, over set {−1, 1}d of all
2d vertices of hypercube Vd = [−1, 1]d . Thus

max
η∈[−1,1]d

W(η) = max
η∈{−1,1}d

W(η), min
η∈[−1,1]d

W(η) = min
η∈{−1,1}d

W(η). (A.11)

From (A.4), (A.5) and (A.11) it follows:

sup
η∈�1×···×�N

W(η) = max
η∈{−1,1}d

W(η), inf
η∈�1×···×�N

W(η) = min
η∈{−1,1}d

W(η). (A.12)

This proves the statement of lemma 1. �
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